PL EN
REVIEW PAPER
Human-robot interaction - what it means for human resource management
 
More details
Hide details
1
Wydział Inżynierii Zarządzania Politechnika Białostocka
 
2
Lomza Academy
 
3
University of Gdansk
 
These authors had equal contribution to this work
 
 
Submission date: 2024-07-21
 
 
Acceptance date: 2025-06-19
 
 
Publication date: 2025-07-17
 
 
Corresponding author
Joanna Maria Moczydłowska   

Wydział Inżynierii Zarządzania Politechnika Białostocka
 
 
JoMS 2025;62(2):138-165
 
KEYWORDS
TOPICS
ABSTRACT
Development of robotics and growing use of robots in many areas of the economy and social life require research which will identify problems related to the use of modern technologies and the development of human-robot interaction (HRI, Human-Robot Interaction). Robotics, autonomous systems and artificial intelligence also create a number of new legal and ethical challenges. Research in this area has been expanding in recent years, but there are still issues that require in-depth scientific exploration. The objective of this paper is to systematize knowledge about interactions between people and robots, with particular emphasis on interactions in the work environment, and to identify research gaps in the analysed problem area. The following research questions were formulated: 1) What determines people's attitudes towards robots? 2) What are the key challenges in human-robot communication? 3) What ethical challenges determine human-robot interaction? In the studies the the method of narrative literature review has been used. The latest scientific publications on the researched issue were analysed. The results of the study indicate that the main factors which determine people's attitudes towards robots are apart from demographic variables and experiences gained by people from contacts with robots, the perceived usefulness of using robots, the image of robots created in the mass media and religiousness. The key challenges in human-robot interaction apart from effective communication is the reflection of emotions. The research results enable the identification of further directions of scientific research on human-robot interaction. They can also enrich practitioner’s perspective in the studied area.
FUNDING
Środki na badania naukowe uczelni.
REFERENCES (88)
1.
Bauer, A., Wollherr, D., & Buss, M. (2008). Human–robot collaboration: a survey. International Journal of Humanoid Robotics, 5(01), 47-66.
 
2.
Bergman, M., de Joode, E., de Geus, M., & Sturm, J. (2019). Human-cobot Teams: Exploring Design Principles and Behaviour Models to Facilitate the Understanding of Non-verbal Communication from Cobots, 191-198.
 
3.
Bonarini, A. (2020). Communication in human-robot interaction. Current Robotics Reports, 1, 279-285.
 
4.
Breazeal, C., Takanishi, A., & Kobayashi, T. (2008). Social robots that interact with people. Springer handbook of robotics, B. Siciliano (red.), Oussama Khatib, Springer-Verlag, Berlin – Heidelberg, 1349-1369.
 
5.
Broadbent, E. (2017). Interactions with robots: The truths we reveal about ourselves. Annual review of psychology, 68, 627-652.
 
6.
Bruckenberger, U., Weiss, A., Mirnig, N., Strasser, E., Stadler, S., & Tscheligi, M. (2013). The good, the bad, the weird: Audience evaluation of a real robot in relation to science fiction and mass media. In Social Robotics: 5th International Conference, IC SR 2013, Bristol, UK, October 27-29, 2013, Proceedings 5, 301-310.
 
7.
Bryant, D. A., Borenstein, J., & Howard, A. (2020). Why should we gender? The effect of robot gendering and occupational stereotypes on human trust and perceived competency. In Proceedings of the 2020 ACM/IE EE international conference on human-robot interaction, 13-21.
 
8.
Bryson, J. J. (2010). Why robot nannies probably won’t do much psychological damage. Interaction Studies, 11(2), 196-200.
 
9.
Campa, R. (2011). Kodeksy etyczne robotów: zagadnienie kontroli sprawowanej przez człowieka. Pomiary Automatyka Robotyka, 15(3), 66-70.
 
10.
Carperter, J. (2015). Culture and Human-Robot Interaction in Militarized Spaces: A War Story. Taylor & Francis, Nowy Jork.
 
11.
Clarke, R. (2014). The regulation of civilian drones’ impacts on behavioural privacy. Computer Law & Security Review, 30(3), 286-305.
 
12.
Coeckelbergh, M. (2022). Robot ethics. MIT Press.
 
13.
Cohen, Y., Naseraldin, H., Chaudhuri, A., & Pilati, F. (2019). Assembly systems in Industry 4.0 era: a road map to understand Assembly 4.0. The International Journal of Advanced Manufacturing Technology, 105, 4037-4054.
 
14.
Cominelli, L., Feri, F., Garofalo, R., Giannetti, C., Meléndez-Jiménez, M. A., Greco, A. & Kirchkamp, O. (2021). Promises and trust in human–robot interaction. Scientific reports, 11(1), 9687.
 
15.
Dautenhahn, K. (2013), Human-Robot Interaction, [w:] The Encyclopedia of Human-Computer Interaction, 2nd Ed., M. Soegaard, R. F. Dam (red.), Interaction Design Foundation, Aarhus.
 
16.
Eidenmüller, H. (2023). Robots’Legal Personality, https://www.law.ox.ac. [18.09.2023].
 
17.
Feil-Seifer, D., & Matarić, M. J. (2011). Socially assistive robotics. IE EE Robotics & Automation Magazine, 18(1), 24-31.
 
18.
Fong, T., Nourbakhsh, I., & Dautenhahn, K. (2003). A survey of socially interactive robots. Robotics and autonomous systems, 42(3-4), 143-166.
 
19.
Gajšek, B., Stradovnik, S., & Hace, A. (2020). Sustainable move towards flexible, robotic, human-involving workplace. Sustainability, 12(16), 6590.
 
20.
Gibbs, J. K., Gillies, M., & Pan, X. (2022). A comparison of the effects of haptic and visual feedback on presence in virtual reality. International Journal of Human-Computer Studies, 157, 102717.
 
21.
Giger, J. C., Moura, D., Almeida, N., & Piçarra, N. (2017). Attitudes towards social robots: The role of gender, belief in human nature uniqueness, religiousness and interest in science fiction. In Proceedings of II International Congress on Interdisciplinarity in Social and Human Sciences, 11, 509.
 
22.
Goetz, J., Kiesler, S., & Powers, A. (2003). Matching robot appearance and behavior to tasks to improve human-robot cooperation. In The 12th IE EE International Workshop on Robot and Human Interactive Communication, 2003. Proceedings. ROM AN 2003, 55-60.
 
23.
Goodrich, M. A., & Schultz, A. C. (2008). Human–robot interaction: a survey. Foundations and Trends® in Human–Computer Interaction, 1(3), 203-275.
 
24.
Groom, V., Takayama, L., Ochi, P., & Nass, C. (2009). I am my robot: The impact of robot-building and robot form on operators. In Proceedings of the 4th ACM/IE EE international conference on Human robot interaction, 31-36.
 
25.
Grzegorczyk, T. (2017). Społeczeństwo wobec rozwoju robotyki: rola badań opinii publicznej. Społeczeństwo i Ekonomia, 1(7), 34-44.
 
26.
Gu, M., Zhao, H. & Dong, T. (eds.). (2019). Technology and Application of Service Robot, Southwest Jiao Tong University Press, Chengdu.
 
27.
Gulrez, T., Nefti-Meziani, S., McEvoy, P., & Hodgson, A. (2016). Loneliness kills: can autonomous systems and robotics assist in providing solutions?. International Journal of Swarm Intelligence and Evolutionary Computation, 5(1), 1-2.
 
28.
Hambuchen, K., Marquez, J., & Fong, T. (2021). A review of NA SA human-robot interaction in space. Current Robotics Reports, 2(3), 265-272.
 
29.
Hoffman, G. (2019). Evaluating fluency in human–robot collaboration. IE EE Transactions on Human-Machine Systems, 49(3), 209-218.
 
30.
Islam, M. J., Hong, J., & Sattar, J. (2019). Person-following by autonomous robots: A categorical overview. The International Journal of Robotics Research, 38(14), 1581-1618.
 
31.
Jankowska, M. (2015). Podmiotowość prawna sztucznej inteligencji?, [w:] O czym mówią prawnicy, mówiąc o podmiotowości, A. Bielska-Brodziak (red.), Wydawnictwo Uniwersytetu śląskiego, Katowice, 171 – 180.
 
32.
Kabacińska, K., Prescott, T. J., & Robillard, J. M. (2021). Socially assistive robots as mental health interventions for children: A scoping review. International Journal of Social Robotics, 13, 919-935.
 
33.
Kätsyri, J., Förger, K., Mäkäräinen, M., & Takala, T. (2015). A review of empirical evidence on different uncanny valley hypotheses: support for perceptual mismatch as one road to the valley of eeriness. Frontiers in psychology, 6, 390.
 
34.
Kätsyri, J., Mäkäräinen, M., & Takala, T. (2017). Testing the ‘uncanny valley’hypothesis in semirealistic computer-animated film characters: An empirical evaluation of natural film stimuli. International Journal of Human-Computer Studies, 97, 149-161.
 
35.
Kulik, J. (2015). Ramię w ramię z robotem. Jak współpraca robotów i ludzi ukształtuje robotykę przyszłości. Automatyka, 9, 102-103.
 
36.
Kurniawan, T. A., Chan, G. Y., Lo, W. H., & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical engineering journal, 118(1-2), 83-98.
 
37.
Kwon, M., Jung, M. F., & Knepper, R. A. (2016). Human expectations of social robots. In 2016 11th ACM/IE EE International Conference on Human-Robot Interaction (HRI), 463-464.
 
38.
Leathers, D. G. (2009). Komunikacja niewerbalna: zasady i zastosowania. Wydawnictwo Naukowe PWN.
 
39.
Lee, C. Y., Lee, H., Hwang, I., & Zhang, B. T. (2020). Visual perception framework for an intelligent mobile robot. In 2020 17th International Conference on Ubiquitous Robots (UR), 612-616.
 
40.
Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D. (2018). Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. The International journal of robotics research, 37(4-5), 421-436.
 
41.
Li, K., & Meng, Z. (2022). Ethics of Robotics Applications. In International Conference on Cognitive based Information Processing and Applications, 325-330.
 
42.
Lin, C. J., & Lukodono, R. P. (2021). Sustainable human–robot collaboration based on human intention classification. Sustainability, 13(11), 5990.
 
43.
Libin, A. V., & Libin, E. V. (2004). Person-robot interactions from the robopsychologists’ point of view: The robotic psychology and robotherapy approach. Proceedings of the IEE E, 92(11), 1789-1803.
 
44.
Luo, X., Amighetti, A., & Zhang, D. (2019). A human-robot interaction for a Mecanum wheeled mobile robot with real-time 3D two-hand gesture recognition. In Journal of Physics: Conference Series, 1267(1), 012056,.
 
45.
Łupkowski, P., & JańskiMały, F. (2020). The more you see me the more you like me: influencing the negative attitude towards interactions with robots. Journal of Automation Mobile Robotics and Intelligent Systems, 14.
 
46.
Małek-Orłowska, M. (2015). Koncepcja poszerzonej epistemologii a metodologia badań interakcji człowiek-robot. Filo-Sofija, 15(29), 93-105.
 
47.
Moczydłowska, J. M. (2023), Przemysł 4.0. Ludzie i technologie, Difin, Warszawa.
 
48.
Mori, M., MacDorman, K. F., & Kageki, N. (2012). The uncanny valley [from the field]. IE EE Robotics & automation magazine, 19(2), 98-100.
 
49.
Nomura, T. (2014). Influences of experiences of robots into negative attitudes toward robots. In The 23rd IE EE International Symposium on Robot and Human Interactive Communication, 460-464.
 
50.
Nomura, T., Suzuki, T., Kanda, T., & Kato, K. (2006). Measurement of negative attitudes toward robots. Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems, 7(3), 437-454.
 
51.
Ostrowski, A. K., DiPaola, D., Partridge, E., Park, H. W., & Breazeal, C. (2019). Older adults living with social robots: Promoting social connectedness in long-term communities. IE EE Robotics & Automation Magazine, 26(2), 59-70.
 
52.
Pagallo, U. (2013), The Law of Robots. Crimes, Contracts, and Torts, Springer, Torino.
 
53.
Paliga, M. (2022). Human–cobot interaction fluency and cobot operators’ job performance. The mediating role of work engagement: A survey. Robotics and Autonomous Systems, 155, 104191.
 
54.
Paliga, M., & Pollak, A. (2021). Development and validation of the fluency in human-robot interaction scale. A two-wave study on three perspectives of fluency. International Journal of Human-Computer Studies, 155, 102698.
 
55.
Palomäki, J., Kunnari, A., Drosinou, M., Koverola, M., Lehtonen, N., Halonen, J., & Laakasuo, M. (2018). Evaluating the replicability of the uncanny valley effect. Heliyon, 4(11), 3-4.
 
56.
Perugia, G., Díaz-Boladeras, M., Catala-Mallofré, A., Barakova, E. I., & Rauterberg, M. (2020). ENGAGE-DE M: a model of engagement of people with dementia. IE EE Transactions on Affective Computing, 13(2), 926-943.
 
57.
Peschel, J. M., & Murphy, R. R. (2012). On the human–machine interaction of unmanned aerial system mission specialists. IE EE Transactions on Human-Machine Systems, 43(1), 53-62.
 
58.
Piçarra, N., Giger, J. C., Pochwatko, G., & Możaryn, J. (2016). Designing social robots for interaction at work: Socio-cognitive factors underlying intention to work with social robots. Journal of Automation, Mobile Robotics and Intelligent Systems, 17-26.
 
59.
Prescott, T. J., & Robillard, J. M. (2021). Are friends electric? The benefits and risks of human-robot relationships. Iscience, 24(1), 1-5.
 
60.
Pu, L., Moyle, W., Jones, C., & Todorovic, M. (2019). The effectiveness of social robots for older adults: a systematic review and meta-analysis of randomized controlled studies. The Gerontologist, 59(1), e37-e51.
 
61.
Raj, R., & Kos, A. (2022). A comprehensive study of mobile robot: history, developments, applications, and future research perspectives. Applied Sciences, 12(14), 6951.
 
62.
Randell, R., Greenhalgh, J., Hindmarsh, J., Dowding, D., Jayne, D., Pearman, A., & Kotze, A. (2014). Integration of robotic surgery into routine practice and impacts on communication, collaboration, and decision making: a realist process evaluation protocol. Implementation Science, 9, 52.
 
63.
Ren, S. (2004). Assessing wastewater toxicity to activated sludge: recent research and developments. Environment international, 30(8), 1151.
 
64.
Riek, L. D., Adams, A., & Robinson, P. (2011, March). Exposure to cinematic depictions of robots and attitudes towards them. In Proceedings of international conference on human-robot interaction, workshop on expectations and intuitive human-robot interaction, 6.
 
65.
Robert Jr, L. P., Alahmad, R., Esterwood, C., Kim, S., You, S., & Zhang, Q. (2020). A review of personality in human–robot interactions. Foundations and Trends® in Information Systems, 4(2), 107-212.
 
66.
Robinette, P., Howard, A., & Wagner, A. R. (2017). Conceptualizing overtrust in robots: why do people trust a robot that previously failed?. Autonomy and Artificial Intelligence: A Threat or Savior?, 129-155.
 
67.
Robinson, H., MacDonald, B., Kerse, N., & Broadbent, E. (2013). The psychosocial effects of a companion robot: a randomized controlled trial. Journal of the American Medical Directors Association, 14(9), 661-667.
 
68.
Rodriguez-Guerra, D., Sorrosal, G., Cabanes, I., & Calleja, C. (2021). Human-robot interaction review: Challenges and solutions for modern industrial environments. IE EE Access, 9, 108557-108578.
 
69.
Różańska-Walczuk, M., Pochwatko, G., Świdrak, J., Możaryn, J., & Kukiełka, K. (2016). Wybrane predyktory postawy wobec robotów społecznych. Prace Naukowe Politechniki Warszawskiej. Elektronika, 195(1), 15-24.
 
70.
Rudnicka, P. (2014). Psychologiczne aspekty interakcji człowiek-robot. Medical Robotics Reports, 1, 53-60.
 
71.
Scheutz, C., Law, T., & Scheutz, M. (2021). Envirobots: how human–robot interaction can facilitate sustainable behavior. Sustainability, 13(21), 12283.
 
72.
Sestino, A., & D’Angelo, A. (2023). My doctor is an avatar! The effect of anthropomorphism and emotional receptivity on individuals’ intention to use digital-based healthcare services. Technological Forecasting and Social Change, 191, 122505.
 
73.
Sharkey, A. (2014). Robots and human dignity: a consideration of the effects of robot care on the dignity of older people. Ethics and Information Technology, 16, 63-75.
 
74.
Sharkey, A., & Sharkey, N. (2021). We need to talk about deception in social robotics!. Ethics and Information Technology, 23, 309-316.
 
75.
Solarz, P. (2023). Współczesna robotyzacja w administracji publicznej. Zagadnienia terminologiczne i teoretyczne na wybranych przykładach. Journal of Modern Science, 52(3), 230-252.
 
76.
Solomon, M. R.. (2006). Zachowania i zwyczaje konsumentów. Helios, Gliwice, 242.
 
77.
Van Wynsberghe, A. (2016). Healthcare robots: Ethics, design and implementation. Routledge.
 
78.
van Wynsberghe, A., & Comes, T. (2020). Drones in humanitarian contexts, robot ethics, and the human–robot interaction. Ethics and Information Technology, 22, 43-53.
 
79.
Vasconez, J. P., Kantor, G. A., & Cheein, F. A. A. (2019). Human–robot interaction in agriculture: A survey and current challenges. Biosystems engineering, 179, 35-48.
 
80.
Vido, M., Scur, G., Massote, A. A., & Lima, F. (2020). The impact of the collaborative robot on competitive priorities: case study of an automotive supplier. Gestão & Produção, 27, e5358.
 
81.
Wang, X., Krumhuber, E. G., & Gratch, J. (2018). The interpersonal effects of emotions in money versus candy games. Journal of Experimental Social Psychology, 79, 315-327.
 
82.
Wasielewska, A., & Łupkowski, P. (2021). Nieoczywiste relacje z technologią. Przegląd badań na temat ludzkich postaw wobec robotów. Człowiek i Społeczeństwo, 51, 165-187.
 
83.
Waytz, A., Heafner, J., & Epley, N. (2014). The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle. Journal of experimental social psychology, 52, 113-117.
 
84.
Wojciszke, B. (2011). Psychologia społeczna, Wydawnictwo Scholar, Warszawa.
 
85.
Wykowska, A. (2020). Social robots to test flexibility of human social cognition. International Journal of Social Robotics, 12(6), 1203-1211.
 
86.
Yanco, H. A., & Drury, J. (2004). Classifying human-robot interaction: an updated taxonomy. In 2004 IE EE international conference on systems, man and cybernetics (IE EE Cat. No. 04CH37583), 3, 2841-2846.
 
87.
Zhang, F. Z., Campbell, D., & Gould, S. (2021). Spatially conditioned graphs for detecting human-object interactions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 13319-13327.
 
88.
Ziemski, M. (2017). Osoba elektroniczna posiadająca osobowość elektroniczną. In Gremio, 1, 28-33.
 
eISSN:2391-789X
ISSN:1734-2031
Journals System - logo
Scroll to top