PRACA POGLĄDOWA
Enhancing conversational ai with the Rasa framework: intent understanding and NLU pipeline optimization
Więcej
Ukryj
3
Wyższa Szkoła Biznesu - National Louis University
Data nadesłania: 21-06-2024
Data akceptacji: 15-07-2024
Data publikacji: 20-08-2024
JoMS 2024;57(Numer specjalny 3):531-548
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Implementing the Rasa NLU pipeline allowed intent detection and entity recognition, particularly in complex scenarios with multi-intent queries. Communication within the Rasa NLU pipeline was effectively managed, ensuring seamless data flow between components, which preserved context and enhanced interpretability. The voice assistant developed with STT and TTS capabilities demonstrated robust real-time natural language processing, handling spoken queries efficiently. This confirmed the practical viability of using the Rasa framework for scalable and customizable conversational AI applications.
Discussing: The findings underscore the robustness of the Rasa NLU pipeline in handling diverse conversational demands and the flexibility of its components to adapt to different linguistic contexts. The research discusses the potential of integrating sophisticated NLU techniques to create more intuitive and responsive conversational agents, highlighting the critical role of context-aware processing in improving user interaction with AI systems.
REFERENCJE (20)
1.
Al-Tuama, A. T., Nasrawi, D. A. (2022). Intent Classification Using Machine Learning Algorithms and Augmented Data. 2022 International Conference on Data Science and Intelligent Computing, ICDSIC 2022, 234–239.
https://doi.org/10.1109/ICDSIC....
2.
Arevalillo-Herraez, M., Arnau-Gonzalez, P., Ramzan, N. (2022). Adapting the DIET Architecture and the Rasa Conversational Toolkit for the Sentiment Analysis Task. IEEE Access, 10, 107477–107487.
https://doi.org/10.1109/ACCESS....
3.
Benayas, A., Sicilia, M. A., Mora-Cantallops, M. (2023). Automated Creation of an Intent Model for Conversational Agents. Applied Artificial Intelligence, 37(1).
https://doi.org/10.1080/088395....
4.
Bercaru, G., Truică, C. O., Chiru, C. G., Rebedea, T. (2023). Improving Intent Classification Using Unlabeled Data from Large Corpora. Mathematics, 11(3), 769–769.
https://doi.org/10.3390/MATH11....
5.
Bhattacharyya, S., Banerjee, J. S., Köppen, M. (2024). Virtual Scribe for Visually Impaired Learners Through Interactive Speech-Based Application. 111–121.
https://doi.org/10.1007/978-98....
6.
Bhutada, Dr. S., Rakshit, C., Vaishnavi, G., Varshitha, V. (2023). Chatra Paryesana (Student Enquiry System). International Journal For Science Technology And Engineering, 11(6), 670–674.
https://doi.org/10.22214/IJRAS....
7.
Caldelli, R., Castoldi, P., Gharbaoui, M., Martini, B., Matarazzo, M., Sciarrone, F. (2023). On helping users in writing network slice intents through NLP and User Profiling. 2023 IEEE 9th International Conference on Network Softwarization: Boosting Future Networks through Advanced Softwarization, NetSoft 2023 – Proceedings, 545–550.
https://doi.org/10.1109/NETSOF....
8.
El-Rif, E., Leivadeas, A., Falkner, M. (2023). Intent Expression Through Natural Language Processing in an Enterprise Network. IEEE International Conference on High Performance Switching and Routing, HPSR, 2023-June, 14–19.
https://doi.org/10.1109/HPSR57....
9.
Gandhi, R., Jain, P., Thakur, H. K. (2024). Mental Health Analysis Using RASA and BERT: Mindful. Communications in Computer and Information Science, 2054 CCIS, 246–258.
https://doi.org/10.1007/978-3-....
10.
Hwang, M. H., Shin, J., Seo, H., Im, J. S., Cho, H. (2021). KoRASA: Pipeline Optimization for Open-Source Korean Natural Language Understanding Framework Based on Deep Learning. Mobile Information Systems, 2021.
https://doi.org/10.1155/2021/9....
11.
Lemaignan, S., Cooper, S., Ros, R., Ferrini, L., Andriella, A., Irisarri, A. (2023). Open-source Natural Language Processing on the PAL Robotics ARI Social Robot. ACM/IEEE International Conference on Human-Robot Interaction, 907–908.
https://doi.org/10.1145/356829....
12.
Luise, R. S. A. De, Arevalillo-Herraez, M., Arnau, D. (2023). On Using Conversational Frameworks to Support Natural Language Interaction in Intelligent Tutoring Systems. IEEE Transactions on Learning Technologies, 16(5), 722–735.
https://doi.org/10.1109/TLT.20....
13.
Mishra, D. S., Agarwal, A., Swathi, B. P., Akshay, K. C. (2022). Natural language query formalization to SPARQL for querying knowledge bases using Rasa. Progress in Artificial Intelligence, 11(3), 193–206.
https://doi.org/10.1007/S13748....
14.
Moura, A., Lima, P., Mendonça, F., Mostafa, S. S., Morgado-Dias, F. (2023). On the Use of Transformer-Based Models for Intent Detection Using Clustering Algorithms. Applied Sciences, 13(8), 5178–5178.
https://doi.org/10.3390/APP130....
15.
Poser, M., Küstermann, G. C., Tavanapour, N., Bittner, E. A. C. (2022). Design and Evaluation of a Conversational Agent for Facilitating Idea Generation in Organizational Innovation Processes. Information Systems Frontiers 2022 24:3, 24(3), 771–796.
https://doi.org/10.1007/S10796....
16.
Rizou, S., Theofilatos, A., Paflioti, A., Pissari, E., Varlamis, I., Sarigiannidis, G., Chatzisavvas, K. C. (2023). Efficient intent classification and entity recognition for university administrative services employing deep learning models. Intelligent Systems with Applications, 19, 200247–200247.
https://doi.org/10.1016/J.ISWA....
17.
Upadhyaya, P., Kaur, G. (2023). Smart Multi-linguistic Health Awareness System using RASA Model. International Conference on Sustainable Computing and Smart Systems, ICSCSS 2023 – Proceedings, 922–927.
https://doi.org/10.1109/ICSCSS....
18.
Vivek, B., Maheswaran, S., Prabhuram, N., Janani, L., Naveen, V., Kavipriya, S. (2022). Artificial Conversational Entity with Regional Language. 2022 International Conference on Computer Communication and Informatics, ICCCI 2022.
https://doi.org/10.1109/ICCCI5....
19.
Wan, X., Zhang, W., Huang, M., Feng, S., Wu, Y. (2023). A Unified Approach to Nested and Non-Nested Slots for Spoken Language Understanding. Electronics, 12(7), 1748–1748.
https://doi.org/10.3390/ELECTR....
20.
Wang, Y., Yang, Z., Zhang, X. (2023). Improving NLP Accuracy with Stack-Propagation and Knowledge Distillation: A Joint Model for Intent Detection and Slot Filling. Frontiers in Computing and Intelligent Systems, 3(2), 106–109.
https://doi.org/10.54097/FCIS.....