ORIGINAL PAPER
Ethical challenges of artificial intelligence (AI) in medicine. Analysis on selected examples
 
More details
Hide details
1
Medical University of Gdańsk
 
 
Submission date: 2025-02-10
 
 
Final revision date: 2025-08-01
 
 
Acceptance date: 2025-08-11
 
 
Publication date: 2025-10-31
 
 
Corresponding author
Beata Kosiba   

Medical University of Gdańsk
 
 
JoMS 2025;63(3):658-678
 
KEYWORDS
TOPICS
ABSTRACT
Objectives:
The aim of this paper is to analyse the ethical challenges associated with the use of artificial intelligence (AI) in medicine. The authors focus on specific cases to show how AI-based technologies affect ethics in the context of diagnosis, treatment and patient data management.

Material and methods:
The paper uses an analytical and descriptive approach. The authors attempted to explain specific examples of the application of AI in medicine, such as clinical decision support systems, diagnostic imaging or treatment outcome prediction. The analyses were based on existing research on ethical aspects of AI, such as data privacy, algorithmic biases and liability for errors of artificial intelligence systems. For the normative aspects, the authors refer to bioethical principles such as autonomy, justice, beneficence and non-maleficence to assess the impact of AI on medical practice.

Results:
The authors highlight the challenges of protecting patient data in AI systems, especially in the context of processing sensitive data. They also identify the risk of discrimination arising from inappropriate training data, which may lead to misdiagnosis or unequal treatment of patients. Another raised issue is the ambiguous rules in defining responsibility for errors made by artificial intelligence systems - whether the doctor, the programmer or the technology developer is responsible. The authors noted that over-reliance on AI can undermine the patient's trust in the doctor and reduce empathy in the treatment process. They finally emphasize the need for regulations and guidelines for the implementation of AI in medicine to minimise ethical risks.

Conclusions:
As of today, it is difficult to foresee all the ethical challenges associated with the use of AI in medicine. This area requires vigilance and critical reflection.
REFERENCES (63)
1.
Abd-Alrazaq, A., AlSaad, R., Aziz, S., Ahmed, A., Denecke, K., Househ, M., Farooq, F., Sheikh, J. (2023). Wearable Artificial Intelligence for Anxiety and Depression: Scoping Review. Journal of Medical Internet Research, 25, e42672, https://doi.org/10.2196/42672.
 
2.
Ahmed, A., Aziz, S., Toro, C.T., Alzubaidi, M., Irshaidat, S., Serhan, H.A., Abd-Alrazaq, A.A.A., Househ, M. (2022). Machine learning models to detect anxiety and depression through social media: A scoping review. Computer methods and programs in biomedicine update, 2, 100066, https://doi.org/10.1016/j.cmpb....
 
3.
Alsharif, F. (2024). Artificial Intelligence in Oncology: Applications, Challenges and Future Frontiers. International Journal of Pharmaceutical Investigation, 14(3), 647–656, https://doi.org/10.5530/ijpi.1....
 
4.
Ardila, D., Kiraly, A.P., Bharadwaj, S., Choi, B., Reicher, J.J., Peng, L., Tse, D., Etemadi, M., Ye, W., Corrado, G., Naidich, D.P., Shetty, S. (2019).End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 25(6), 954–961. https://doi.org/10.1038/s41591....
 
5.
Banjar, H., Ranasinghe, D., Brown, F., Adelson, D., Kroger, T., Leclercq, T., White, D., Hughes, T., Chaudhri, N. (2017). Modelling Predictors of Molecular Response to Frontline Imatinib for Patients with Chronic Myeloid Leukaemia, 12(1), e0168947. PLOS ONE, https://doi.org/10.1371/journa....
 
6.
Baxi, V., Edwards, R., Montalto, M., Saha, S. (2022). Digital pathology and artificial intelligence in translational medicine and clinical practice. Modern Pathology, 35(1), 23–32, https://doi.org/10.1038/s41379....
 
7.
Blanco-González, A., Cabezón, A., Seco-González, A., Conde-Torres, D., Antelo-Riveiro, P., Piñeiro, Á., Garcia-Fandino, R. (2023). The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies.Pharmaceuticals, 16(6), 891, https://doi.org/10.3390/ph1606....
 
8.
Bremer-Hoeve, S., van Vliet, N.I., van Bronswijk, S.C., Huntjens, R.J.C., de Jongh, A., van Dijk, M.K. (2023). Predictors of treatment dropout in patients with posttraumatic stress disorder due to childhood abuse. Front. Psychiatry, 14,1194669, https://doi: 10.3389/fpsyt.2023.1194669.
 
9.
Brown, C., Story, G. W., Mourão-Miranda, J., Baker, J.T. (2021). Will artificial intelligence eventually replace psychiatrists. The British Journal of Psychiatry, 218(3), 131–134, https://doi.org/10.1192/bjp.20....
 
10.
Bush, N.E., Armstrong, C.M., Hoyt, T.V. (2019). Smartphone apps for psychological health: A brief state of the science review. Psychological Services, 16(2), 188–195, https://doi.org/10.1037/ser000....
 
11.
Chałubińska-Jentkiewicz, K. (2024). Prawo do prywatności w czasach nadzoru i sztucznej inteligencji. Themis Polska Nova, 1(15), 71–93, https://doi.org/10.15804/tpn20....
 
12.
Chan, K.S., Zary, N. (2019). Applications and challenges of implementing artificial intelligence in medical education: integrative review. JMIR Medical Education, 5(1), e13930, https://doi.org/10.2196/13930.
 
13.
Chandra, S., Mohammadnezhad, M., Ward, P. (2018). Trust and communication in a doctor- patient relationship: a literature review. J Healthc Commun, 03, doi: 10.4172/2472-1654.100146.
 
14.
Dyrektywa Parlamentu Europejskiego i Rady (UE) 2024/2853 z dnia 23 października 2024 r. w sprawie odpowiedzialności za produkty wadliwe i uchylenia dyrektywy Rady 85/374/EWG. Dz.U. L 2024/2853, tekst jednolity, https://eur-lex.europa.eu/lega... (dostęp: 1.08.2025).
 
15.
Eisenstadt, M., Liverpool, S., Infanti, E., Ciuvat, R.M., Carlsson, C. (2021).
 
16.
Mobile Apps That Promote Emotion Regulation, Positive Mental Health, and Well-being in the General Population: Systematic Review and Meta-analysis. Ment Health, 8(11), e31170.JMIR, https://doi.org/10.2196/31170.
 
17.
Elshoeibi, A.M., Badr, A., Elsayed, B., Metwally, O., Elshoeibi, R., Elhadary, M.R., Elshoeibi, A., Attya, M.A., Khadadah, F., Alshurafa, A., Alhuraiji, A., Yassin, M. (2023). Integrating AI and ML in Myelodysplastic Syndrome Diagnosis: State-of-the-Art and Future Prospects. Cancers, 16(1), 65, https://doi.org/10.3390/cancer....
 
18.
Elyoseph, Z., Levkovich, I., Shinan-Altman, S. (2024). Assessing prognosis in depression: comparing perspectives of AI models, mental health professionals and the general public. Family medicine and community health, 12(Suppl 1), e002583, https://doi.org/10.1136/fmch-2....
 
19.
Ferrara, E. (2023). Fairness and bias in artificial intelligence: a brief survey of sources, impacts, and mitigation strategies. Science, 6(3), https://doi: 10.3390/sci6010003.
 
20.
Gardiner, H., Mutebi, N. (2025). AI and mental healthcare: ethical and regulatory considerations, https://post.parliament.uk/res... (dostęp: 1.08.2025).
 
21.
Hadi, A., Tran, E., Nagarajan, B., Kirpalani, A. (2024). Evaluation of ChatGPT as a diagnostic tool for medical learners and clinicians. Plos One, 19(7), e0307383, https://doi.org/10.1371/journa....
 
22.
Hoppe, J.M., Auer, M.K., Strüven, A., Massberg, S., Stremmel, C. (2024). ChatGPT With GPT-4 outperforms emergency department physicians in diagnostic accuracy: retrospective analysis. Journal of Medical Internet Research, 26, e56110, https://doi.org/10.2196/56110.
 
23.
Kanter, G.P., Packel, E.A. (2023). Health care privacy risks of AI chatbots. JAMA, 330(4), 311–312, https://doi.org/10.1001/jama.2....
 
24.
Kaźmierczyk, P., Kupis, M., Maj, M. (2022). Biała księga AI w praktyce klinicznej. https://aiwzdrowiu.pl/biala-ks... (dostęp: 1.08.2025).
 
25.
Kheifetz, Y., Scholz, M. (2019). Modeling individual time courses of thrombopoiesis during multi-cyclic chemotherapy. PloS Computational Biology, 15(3), e1006775, https://doi.org/10.1371/journa....
 
26.
Komisja Etyki Lekarskiej Naczelnej Rady Lekarskiej (2025). AI. Komentarz do znowelizowanego KEL: art. 12. https://nil.org.pl/aktualnosci... (dostęp: 4.02. 2025).
 
27.
Konstytucja Rzeczypospolitej Polskiej z dnia 2 kwietnia 1997 r., Dz.U. 1997.78.483, tekst jednolity.
 
28.
Kotter, E., D’Antonoli, T.A., Cuocolo, R., Hierath, M., Huisman, M., Klontzas, M.E., Martí-Bonmatí, L., May, M.S., Neri, E., Nikolaou, K., Santos, D.P.D., Radzina, M., Shelmerdine, S.C., Bellemo, A. (2025). Guiding AI in radiology: ESR’s recommendations for effective implementation of the European AI Act. Insights into Imaging, 16(1), 33, https://doi.org/10.1186/s13244....
 
29.
Kp Jayatunga, M., Ayers, M., Bruens, L., Jayanth, D., Meier, C. (2024). How successful are AI-discovered drugs in clinical trials? A first analysis and emerging lessons. Drug Discovery Today, 29(6), 104009, https://doi.org/10.1016/j.drud....
 
30.
Krause, J., Grabsch, H.I., Kloor, M., Jendrusch, M., Echle, A., Buelow, R.D., Boor, P., Luedde, T., Brinker, T.J., Trautwein, C., Pearson, A.T., Quirke, P., Jenniskens, J., Offermans, K., van den Brandt, P.A., Kather, J.N. (2021). Deep learning detects genetic alterations in cancer histology generated by adversarial networks. The Journal of Pathology, 254(1), 70–79, https://doi.org/10.1002/path.5....
 
31.
Kundu, S. (2021). How will artificial intelligence change medical training. Communications Medicine, 1(1), 8, https://doi.org/10.1038/s43856....
 
32.
Kwon, M.R., Chang, Y., Ham, S.Y., Cho, Y., Kim, E.Y., Kang, J., Park, E.K., Kim, K.H., Kim, M., Kim, T.S., Lee, H., Kwon, R., Lim, G.Y., Choi, H.R., Choi, J., Kook, S.H., Ryu, S. (2024). Screening mammography performance according to breast density: a comparison between radiologists versus standalone intelligence detection. Breast Cancer Research, 26(1), 68, https://doi.org/10.1186/s13058....
 
33.
Lejeune, A., Le Glaz, A., Perron, P-A., Sebti, J., Baca-Garcia, E., Walter, M., Lemey, C., Berrouiguet, S. (2022). Artificial intelligence and suicide prevention: A systematic review. European Psychiatry, 65(1), e19, 1–8, https://doi.org/10.1192/j.eurp....
 
34.
Lekadir, K., Frangi, A.F., Porras, A.R., Glocker, B., Cintas, C., Langlotz, C.P., Weicken, E., Asselbergs, F.W., Prior, F., Collins, G.S., Kaissis, G., Tsakou, G., Buvat, I., Kalpathy-Cramer, J., Mongan, J., Schnabel, J.A., Kushibar, K., Riklund, K., Marias, K., Amugongo, L.M., Fromont, L.A., Maier-Hein, L., Cerdá-Alberich, L., Martí-Bonmatí, L., Cardoso, M.J., Bobowicz, M., Shabani, M., Tsiknakis, M., Zuluaga, M.A., Fritzsche, M., Camacho, M., Linguraru, M.G., Wenzel, M., Bruijne, M.D., Tolsgaard, M.G., Goisauf, M., Abadía, M.C., Papanikolaou, N., Lazrak, N., Pujol, O., Osuala, R., Napel, S., Colantonio, S., Joshi, S., Klein, S., Aussó, S., Rogers, W.A., Salahuddin, Z., Starmans, M.P.A. (2025). FUTURE-AI: international consensus guideline for trustworthy and deployable artificial intelligence in healthcare. bmj, 388, https://doi.org/10.1136/bmj-20....
 
35.
Li, Y., Xiong, X., Liu, X., Wu, Y., Li, X., Liu, B., Lin, B., Li, Y., Xu, B. (2024). An interpretable deep learning model for detecting BRCA pathogenic variants of breast cancer from hematoxylin and eosin-stained pathological images. PeerJ, 12, e18098, https://doi.org/10.7717/peerj.....
 
36.
Lin, A., Giuliano, C.J., Palladino, A., John, K.M., Abramowicz, C., Yuan, M.L., Sausville, E.L., Lukow, D.A., Liu, L., Chait, A.R., Galluzzo, Z.C., Tucker, C., Sheltzer, J.M. (2019). Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Science Translational Medicine, 11(509), eaaw8412, https://doi.org/10.1126/scitra....
 
37.
Lipkova, J., Chen, R.J., Chen, B., Lu, M.Y., Barbieri, M., Shao, D., Vaidya, A.J., Chen, C., Zhuang, L., Williamson, D.F.K., Shaban, M., Chen, T.Y., Mahmood, F. (2022). Artificial intelligence for multimodal data integration in oncology. Cancer Cell, 40(10), 10951110, https://doi.org/10.1016/j.ccel....
 
38.
Mansoor, M.A., Ansari, K.H. (2024). Early Detection of Mental Health Crises through Artifical-Intelligence-Powered Social Media Analysis: A Prospective Observational Study. Journal of Personalized Medicine, 14(9), 958, https://doi.org/10.3390/jpm140....
 
39.
Marks, M., Haupt, C.E. (2023). AI chatbots, health privacy, and challenges to HIPAA compliance. JAMA, 330(4), 309–310, https://doi.org/10.1001/jama.2....
 
40.
McCradden, M., Hui, K., Buchman, D.Z. (2023). Evidence, ethics and the promise of artificial intelligence in psychiatry. Journal of Medical Ethics, 49(8), 573–579, https://doi.org/10.1136/jme-20....
 
41.
Munson, B.P., Chen, M., Bogosian, A., Kreisberg, J.F., Licon, K., Abagyan, R., Kuenzi B.M., Ideker, T. (2024). De novo generation of multi-target compounds using deep generative chemistry. Nature Communications, 15(1), 3636,https://doi.org/10.1038/s41467....
 
42.
Narayanan, S., Ramakrishnan, R., Durairaj, E., Das, A. (2023). Artificial Intelligence Revolutionizing the Field of Medical Education. Cureus, 15(11), e49604, https://doi.org/10.7759/cureus....
 
43.
Obradovich, N., Khalsa, S.S., Khan, W.U., Suh, J., Perlis, R.H., Ajilore, O., Paulus, M.P. (2024). Opportunities and risks of large language models in psychiatry. NPP –Digital Psychiatry and Neuroscience, 2(1), 8, https://doi.org/10.1038/s44277....
 
44.
Owen, D., Lynham, A.J., Smart, S. E., Pardinas, A.F., Camacho Collados, J. (2024). Artificial intelligence for analyzing mental health disorders in social media: a quarter-century narrative review of progress and challenges. Journal of Medical Internet Research, 26, e59225, https://doi.org/10.2196/59225.
 
45.
Perković, G., Drobnjak, A., Botički, I. (2024). Hallucinations in LLMs: Understanding and addressing challenges. W:47th MIPRO ICT and Electronics Convention (MIPRO), https://doi.10.1109/mipro60963....
 
46.
Pham, K.T., Nabizadeh, A., Selek, S. (2022). Artificial Intelligence and Chatbots in Psychiatry. The Psychiatric Quarterly, 93(1), 249–253, https://doi.org/10.1007/s11126....
 
47.
Popa, S.L., Ismaiel, A., Brata, V.D., Turtoi, D.C., Barsan, M., Czako, Z., Pop, C., Muresan, L., Stanculete, M. F., Dumitrascu, D.I. (2024). Artificial Intelligence and medical specialties: support or substitution. Medicine and Pharmacy Reports, 97(4), 409–418, https://doi.org/10.15386/mpr-2....
 
48.
Rogers, C.R. (1965). The therapeutic relationship: Recent theory and research. Australian Journal of Psychology, 17(2), 95–108, https://psycnet.apa.org/doi/10....
 
49.
Roos J, Werbart A. (2013). Therapist and relationship factors influencing dropout from individual psychotherapy: A literature review. Psychotherapy Research, 23, 394–418, https://doi: 10.1080/10503307.2013.775528.
 
50.
Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2024/1689 z dnia 13 czerwca 2024 r. w sprawie ustanowienia zharmonizowanych przepisów dotyczących sztucznej inteligencji oraz zmiany rozporządzeń (WE) nr 300/2008, (UE) nr 167/2013, (UE) nr 168/2013, (UE) 2018/858, (UE) 2018/1139 i (UE) 2019/2144 oraz dyrektyw 2014/90/UE, (UE) 2016/797 i (UE) 2020/1828 (akt w sprawie sztucznej inteligencji). Dz.U. L 2024/1689, tekst jednolity,https://eur-lex.europa.eu/lega... (dostęp: 1.08.2025).
 
51.
Seitz, L. (2024). Artificial empathy in healthcare chatbots: Does it feel authentic? Computers in Human Behavior. Artificial Humans 2, 100067, https://doi: 10.1016/j.chbah.2024.100067.
 
52.
Shan, K., Patel, M.A., McCreary, M., Punnen, T.G., Villalobos, F., Tardo, L.M., Okuda, D.T. (2025). Faster and better than a physician? Assessing diagnostic proficiency of ChatGPT in misdiagnosed individuals with neuromyelitis optica spectrum disorder. Journal of the Neurological Sciences, 468, 123360, https://doi.org/10.1016/j.jns.....
 
53.
Shmatko, A., Ghaffari Laleh, N., Gerstung, M., Kather, J.N. (2022). Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. Nature Cancer, 3(9), 1026–1038, https://doi.org/10.1038/s43018....
 
54.
Sundar, R., Barr Kumarakulasinghe, N., Huak Chan, Y., Yoshida, K., Yoshikawa, T., Miyagi, Y., Rino, Y., Masuda, M., Guan, J., Sakamoto, J., Tanaka, S., Tan, A.L., Hoppe, M.M., Jeyasekharan, A.D., Ng, C.C.Y., De Simone, M., Grabsch, H.I., Lee, J., Oshima, T., Tsuburaya, A., Tan, P. (2022). Machine-learning model derived gene signature predictive of paclitaxel survival benefit in gastric cancer: results from the randomised phase III SAMIT trial. Gut, 71, 676–685, https://doi.org/10.1136/gutjnl....
 
55.
Suwała S., Szulc P., Dudek A., Białczyk, A., Koperska, K., Junik, R. (2023). ChatGPT fails the Polish board certification examination in internal medicine: artificial intelligence still has much to learn. Pol Archives Internal Medicine, 133, 16608, https://doi:10.20452/pamw.1660....
 
56.
Walter, W., Pfarr, N., Meggendorfer, M., Jost, P., Haferlach, T., Weichert, W. (2022). Next-generation diagnostics for precision oncology: Preanalytical considerations, technical challenges, and available technologies. Seminars in cancer biology, 84, 3–15, https://doi.org/10.1016/j.semc....
 
57.
Wang, L., Chen, X., Zhang, L., Li, L., Huang, Y., Sun, Y., Yuan, X. (2023). Artificial intelligence in clinical decision support systems for oncology. International Journal of Medical Sciences, 20(1), 79–86,https://doi.org/10.7150/ijms.7....
 
58.
Wang, Y.L., Gao, S., Xiao, Q., Li, C., Grzegorzek, M., Zhang, Y.Y., Li, X.H., Kang, Y., Liu, F.H., Huang, D.H., Gong, T.T., Wu, Q.J. (2024). Role of artificial intelligence in digital pathology for gynecological cancers. Computational and Structural Biotechnology Journal, 24, 205–212, https://doi.org/10.1016/j.csbj....
 
59.
Wu, N., Phang, J., Park, J., Shen, Y., Huang, Z., Zorin, M., Jastrzebski, S., Fevry, T., Katsnelson, J., Kim, E., Wolfson, S., Parikh, U., Gaddam, S., Lin, L.L.Y., Ho, K., Weinstein, J.D., Reig, B., Gao, Y., Toth, H., Pysarenko, K., Lewin, A., Lee, J., Airola, K., Mema, E., Chung, S., Hwang, E., Samreen, N., Kim, S.G., Heacock, L., Moy, L., Cho, K., Geras, K.J. (2020). Deep Neural Networks Improve Radiologists’ Performance in Breast Cancer Screening. IEEE Transactions on Medical Imaging, 39(4), 1184–1194, https://doi.org/10.1109/TMI.20....
 
60.
Wu, Y., Mao, K., Dennett, L. i in. (2023). Systematic review of machine learning in PTSD studies for automated diagnosis evaluation. Mental Health Research, 2, 16. npj, https://doi.org/10.1038/s44184....
 
61.
You, Y., Lai, X., Pan, Y., Zheng, H., Vera, J., Liu, S., Deng, S., Zhang, L. (2022). Artificial intelligence in cancer target identification and drug discovery. Signal Transduction and Targeted Therapy, 7(1), 156, https://doi.org/10.1038/s41392....
 
62.
Yusuf, A., Pervin, N., Román-González, M. (2024). Generative AI and the future of higher education: a threat to academic integrity or reformation? Evidence from multicultural perspectives. International Journal of Educational Technology in Higher Education, 21, 21, https://doi.org/10.1186/s41239....
 
63.
Zeng, Q., Klein, C., Caruso, S., Maille, P., Laleh, N.G., Sommacale, D., Laurent, A., Amaddeo, G., Gentien, D., Rapinat, A., Regnault, H., Charpy, C., Nguyen, C.T., Tournigand, C., Brustia, R., Pawlotsky, J.M., Kather, J.N., Maiuri, M.C., Loménie, N., Calderaro, J. (2022). Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology. Journal of Hepatology, 77(1), 116–127, https://doi.org/10.1016/j.jhep....
 
eISSN:2391-789X
ISSN:1734-2031
Journals System - logo
Scroll to top