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Abstract
Body Surface Potential Mappings (BSPM) measurements allow heart rate monitor-

ing. Based on measurements obtained from BSPM, defects and heart rhythm disorders 
can be detected. Due to the multitude of data obtained from BSPM measurements, the 
crucial aspect in the potential test signals analysis on the human body is the automation 
of the disturbance detection process. This automation process involves the use of ad-
vanced algorithms and machine learning techniques to analyze the recorded data and 
identify patterns indicative of heart rhythm disorders. In the article, the information 
dependencies in the measurement channels were analyzed and presented. PCA analysis 
was used to determine informational relationships between the channels. The study 
was carried out on the data from simulations made for the BSPM measuring vest on 
a simulation system created for this purpose and based on the ECG signal generator. As 
a result of the conducted research indicated informational relationships between the 
channels for signals with disturbances: Atrial fibrillation, Brachycardia, Normal signal, 
PVC, Tachycardia, Ventricular Fibrillation, and Ventricular Tachycardia.

Streszczenie
Pomiary BSPM (Body Surface Potential Mappings) umożliwiają monitorowanie 

rytmu serca. Na podstawie pomiarów uzyskanych z BSPM można wykryć wady 
i zaburzenia rytmu serca. Ze względu na mnogość danych uzyskiwanych z pomiarów 
BSPM, kluczowym aspektem analizy potencjalnych sygnałów testowych na ludzkim 
ciele jest automatyzacja procesu wykrywania zakłóceń. Automatyzacja ta polega na 
wykorzystaniu zaawansowanych algorytmów i technik uczenia maszynowego do 
analizy zarejestrowanych danych i identyfikacji wzorców wskazujących na zaburzenia 
rytmu serca. W artykule przeanalizowano i przedstawiono zależności informacyjne 
w kanałach pomiarowych. Do określenia zależności informacyjnych pomiędzy kana-
łami wykorzystano analizę PCA. Badania przeprowadzono na danych pochodzących 
z symulacji wykonanych dla kamizelki pomiarowej BSPM na stworzonym w tym celu 
systemie symulacyjnym opartym na generatorze sygnału EKG. W wyniku przeprowa-
dzonych badań wskazano zależności informacyjne pomiędzy kanałami dla sygnałów 
z zaburzeniami: Migotanie przedsionków, Brachykardia, Sygnał prawidłowy, PVC, 
Tachykardia, Migotanie komór i Częstoskurcz komorowy.

Keywords: BSPM measurements, Principal component analysis, heart disease clas-
sification, vest for BSPM measurement, areas of BSPM heart activity

Słowa kluczowe: Pomiary BSPM, analiza składowych głównych, klasyfikacja 
chorób serca, kamizelka do pomiaru BSPM, obszary aktywności 
serca BSPM
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Introduction

ECG examination is a primary diagnostic procedure for detecting heart 
rhythm disorders. It is based on the electrical potential analysis at ten measure-
ment points (leads/electrode). It is possible to identify distortions in the ECG 
signal characteristic of different abnormalities using diagnostic charts obtained 
from measurements. Some defects require the connection of a heart rate 
monitor for a more extended period. Automation of the analysis process and 
automatic detection allow for efficient analysis of large amounts of recorded 
data during extended measurements (Przysucha, 2020; Kłosowski, 2020).

It is difficult to continuously detect abnormal heart rhythms automati-
cally. Measurement must be performed to minimise uncertainty related to the 
poor contact between the electrode and the body. We also need to be able to 
correct signals affected by static electricity generated by the patients’ clothes.

To improve the measurements, an electrical potential is measured on the 
entire chest (Robinson and Curzen, 2009). Such a method is called Body Surface 
Potential Mapping (BSPM) and has been done with 62 or 102 electrodes in the 
past (Rodrigo, 2017). This research has been carried out since the 1960s (Lux, 
2010, Polak-Jonkisz, 2009). However, only in connection with machine learning 
and the rising computing power of machines can research on the automatic 
classification of disturbances be conducted (Polak-Jonkisz, 2009; Hoekema, 
2004; Hänninen, 2003; SippensGroenewegen, 2000; Rymarczyk, 2020).

The possibilities of BSPM are much more extensive compared to classical 
ECG tests (Korhonen, 2009; Simelius, 2003). In BSPM, obtaining the potential 
from electrodes placed on the entire chest is possible. The most critical are the 
channels placed at the heart level in front and the back of the chest. They allow for 
the data acquisition of heart activity from the back walls of the ventricles. Data 
from these regions is valuable for detecting abnormalities such as coronary 
artery seaside or past myocardial infarctions (Zarychta, 2007). The BSPM was 
also helpful in diagnosing acute coronary artery occlusion (Daly, 2013).

The problem of investigating the information dependence of BSPM meas-
urement signals has been raised in many papers. However, the studies were 
usually limited to a particular disease entity. For instance, in (Weber, 2011), 
the authors focused on determining a representative set of latent variables 



W S G E  U n i v e r s i t y  o f  A p p l i e d  S c i e n c e  i n  J ó z e f ó w858

B. PRZYSUCHA, M. KOWALSKI, M. OLESZEK, M. SUTRYK

(Principal Components) for modifications caused by changes in tissue con-
ductivity. Latent variables were defined for blood, skeletal muscle, lung and 
adipose tissue changes. In (Mark Potse, 2017), a study was carried out on the 
analysis of PCA for Ventricular Fibrillation disorder for measurements where 
sampling took place every half second. Three latent variables were selected 
to represent a set of measurement signals. The work (Bonizzi, 2009) focused 
on PCA analysis for Atrial Fibrillation disorder. The results of PCA analysis 
were used to classify cases with and without the disorder. In a paper (Donnelly, 
2006), signal measurements from patients with old inferior myocardial in-
farction and healthy persons were examined. First, PCA was used to reduce 
the dimensions of the measurement space. Then, based on the obtained latent 
variables, case classification was performed. There are also many papers about 
PCA in ECG, for example (Castells, 2007).

The main aim of the research is to verify and indicate the advantages of 
PCA analysis in detecting heart diseases, especially in the context of the clas-
sification of ECG signals. The paper addresses the issue of determining and 
comparing latent variables for a large class of illnesses by identifying locations 
on the patient’s body connected with latent variables obtained through PCA 
analysis. This information may be beneficial in the event of examinations 
utilizing, for example, 12-channel ECGs, in which the areas responsible for 
recognising the disease entity are positioned in a different location than the 
electrodes used in a conventional ECG. Moreover, this manuscript discusses 
the issue of information reliance between channels and identifies the im-
portance of analysis of BSPM data during measurements to detect invalid 
measurements. Understanding the mechanics of electrical potential diffusion 
in the patient’s body requires understanding information linkages.

This research provides a starting point for clinical studies related to the test-
ing of the BSPM measurement vest. Knowing the information dependencies 
created as a result of performing the PCA analysis on simulation data, there 
is a possibility of verifying measurements from patients and detecting defects 
of the measurement system or noise possibly occurring in the measurement 
path. The information relations in PCA channels performed on simulation 
data and, thus, on model data will enable the validation of the operation of 
the measuring system. In case of faulty signal registration from a particular 
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electrode or signal disturbances, the information relations between the chan-
nels resulting from the conducted PCA analysis will be disturbed. The research 
was conducted using data simulated from the certificated ECG simulator. The 
simulation system was created as a part of the test mechanism for the designed 
BSPM vest with 102 electrodes. The conducted tests showed that the reduction 
of PCA dimensions increases classification efficiency through the increased 
ability of the model to reduce noise and increase classification speed. A not 
insignificant advantage of the complexity reduction achieved by using PCA is 
the simplification of the BSPM system design (both hardware and software), 
which, in the case of commercialisation of the tested solution, positively affects 
the price competitiveness of the device.

This manuscript is an expansion of the study (Wójcik, 2022). In particular, 
the described research was performed using an upgraded phantom. In the 
survey (Wójcik, 2022), the measuring hardware was directly connected to 
resistor mesh, while in the work presented in this paper, we use a much more 
sophisticated fandom where with a mannequin torso with a copper imitation 
of human skin and textile electrodes Improved hardware was also used. The 
differences include a new filtering system and communication protocols 
inside the measuring board.

The work presented in this paper is part of a project whose primary goal 
is to develop a mobile tomographic system for 3D imaging of the heart and 
lungs using BSPM and electrical impedance tomography (EIT).

Our system is divided into two significant parts: the mobile measuring de-
vice and the intelligent cloud framework (Rymarczyk, 2019). The main module 
is an integral section of the mobile measuring device. Its functionality includes 
acquiring and preliminary processing of measurement data, calibrating active 
electrodes, sending the data to the web-server system, and powering the entire 
system. The data acquisition device (DAD) consists of intelligent clothing 
monitoring vital signs. It performs ECG measurements through the body 
surface potential mapping (BSPM) and electrical impendence tomography 
(EIT) and thus monitors the lungs. This wearable system is designed in such 
a way that it does not constrain the movement of the patient while at the same 
time taking reliable data. At the moment, the garment is equipped with 102 
electrodes. The 32 are arranged in two rows (16 electrodes in each row) and 
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distributed uniformly in a plane around the chest perimeter. These electrodes 
are used for the EIT measurements. The rest of the electrodes are being used 
for BSPM. The second part of the DAD is the electronics connected to the 
electrodes responsible for sensing, filtering, and amplifying biosignals. The 
sensing analogue front-end unit amplifies biosignals to the analogue-to-dig-
ital converters (ADCs) level, and preliminary filtering is required. The digital 
processing part is a chip (SoC) system consisting of a field-programmable 
gate array (FPGA), microcontroller, and wireless communication modules, 
such as BT/BLE and Wi-Fi.

The system also contains algorithms for image reconstruction for a human 
chest model with lungs and heart. Electrical impedance tomography was used 
for this purpose. It is a non-invasive imaging method involving examining 
an unknown object using electric currents and appropriate measurements 
of voltage drops at its edge. In medical clinical trials and practice, imaging 
has become an essential part of diagnosing and studying the anatomy and 
function of the human body. The fusion of complementary methods will 
significantly improve diagnostic capabilities. The measurement modules im-
plemented in the portable device, namely electrical impedance tomography 
and body surface potential mapping, will track lung ventilation and cardiac 
activity in real-time.

The system will be a world novelty in terms of functionality and the devel-
opment and application of technological solutions. The main novelty of this 
paper is the construction of the new hardware with a unique filtering and 
measuring setup capable of measuring not only the BSPM signal but also 3D 
electrical impedance tomography (EIT). The solution is based on a custom 
application of the FPGA.
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Research Methodology

There are many systems, methods and algorithms for data measure-
ment and analysis (Rymarczyk, 2021; Rymarczyk, 2019; Koulountzios, 
2019; Korzeniewska, 2021; Korzeniewska 2021; Banasiak, 2014; 
Dusek and Mikulka, 2021; Kryszyn, 2019). The BSPM vest was constructed 
in such a way as to be able to measure the BSPM and EIT (Rymarczyk, 2019). 
For the EIT, we concluded that to reconstruct a 3D image, we need to include 
at least two rows of electrodes. These two rows are in the middle part of the 
vest, and the top two are located below the armpits (see Figure 1). The rest of 
the electrodes are located in such a way as to have a dense grid of electrodes 
around the patient’s body. Also, the location of electrodes overlaps the points at 
which classical 12-lead ECG is performed; thus, the vest can measure standard 
ECG. The vest consists of 102 electrodes, all of which can be used for BSPM. 
In addition, the innovative design of the vest (shown in Figure 2) and the 
use of elastic textile-silicone electrodes (shown in Figure 3) allow for sound 
pressure and contact with the body and, consequently, better data reading.

Figure 1. The schematic view of the electrode location on the measuring vest
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Figure 2. The measuring vest was designed and manufactured by Netrix S.A.

Figure 3. The elastic silicone-textile electrode was designed and manufactured by Netrix S.A.

The data for the analysis comes from the measurement signals simulation 
for the designed vest. The simulation system consisted of the following: The 
ProSim 4 ECG simulator generates an ECG-like signal for all standard and 
abnormal heart rhythms; the phantom is used to convert the 10-lead ECG 
simulator signal to 102 BSPM distributions. This was achieved by designing 
a net of resistors that mimicked the human body. Multiplexer systems are 
connected in series using FFC tape. A controller circuit board amplifies and 
converts signals from analogue to digital signals.
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Due to the specifics of the measured signal (low signal-to-noise ratio, low 
signal amplitude), it was necessary to design and develop a custom filter-
ing system to compare the measurements obtained to the state-of-the-art 
Holters. The simulator can generate a standard ECG signal, slow heart rate 
down to 30 BPM, increase heart rate up to 300 BPM, and various disorders 
such as atrial fibrillation, premature ventricular contraction, ventricular tach-
ycardia, ventricular fibrillation, transvenous pacer pulse, second-degree AV 
block, third-degree AV block. The signal from the simulator is close to the 
natural heart rhythm – with a similar electrical amplitude level and type of 
noise. This device is used in hospitals to test and validate the correct opera-
tion of ECG monitors and other equipment used to monitor heart rhythm 
(Randazzo, 2022; Sadrawi, 2017).

A phantom was created to test the designed solution, converting signals 
from a 10-channel ECG simulator into a 128-channel potential distribution 
map compatible with the previously designed multiplexer blocks. Each meas-
urement channel has an independent forming and pre-filtering system, thanks 
to which the signal fed to the analogue keys shows a much higher signal-
to-noise ratio than the directly measured signal. Additionally, input blocks 
ensured the maximum input impedance of the measurement system. The 
schematic of the measurement step is shown in Figure 4.

Figure 4. Diagram showing the measurement setup
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Figure 4 shows the schematic diagram corresponding to the experimental 
setup used during the data collection. On the Left, the FLUKE ProSim4 ECG 
signal simulator is visible. Fluke ProSim4 is used in hospitals for periodic 
validation of ECG devices. It is designed to test patient monitors at the point 
of use. The easy and secure connection ensures the simulator can test 12-lead 
ECG, NIBP, IBP and respiration in seconds. Built-in test sequences, intuitive 
operation and one-touch screen access to most functions make the ProSim 4 
an indispensable diagnostic tool for evaluating the performance of monitor-
ing devices. The ten leads from the simulator are connected to the phantom 
equipped with conduction copper pads. Inside the phantom is a network of 
resistors that mimic the human body’s continuous resistance.

The simulated potentials are measured via removable elastic textile electrodes 
mounted on the vest. The signals are measured, filtered, and transmitted via 
USB or Wi-Fi to the computer for further analysis. The vest contains eight 
boards that can control the measurement of 128 channels. In the vest, only 102 
are used. Each board is connected in series with the other. Finally, the last board 
is connected to the main EIT/BSPM board. The mainboard has the FPGA that 
controls electrical impedance (EIT) and BSPM. It is also equipped with Analog 
Digital Converters (ADC) and multiplexers. The collected data is then sent to 
the computer over a USB or Wi-Fi ESP32 module. The mainboard also has 
analog and software filters. The FPGA also plays a role in signal filtering. One 
of the board’s goals is to deal with noise and baseline wander cancellation.

The system has been designed using analogue multiplexers coupled with 
filters and amplifiers that form the signal to values valid for measurements. The 
signal is formed after leaving the multiplexer block, and it is filtered again us-
ing an additional stopband filter cutting off 50Hz frequency and a combiner 
system using the resultant Wilson signal as a reference. It is passed on to ADC 
converters, where the last process of signal filtration takes place with the FFT 
filter. The measurement process is carried out cyclically on all 128 measured 
channels, thus obtaining an adequate sampling of the signal at the level of 1ksps.

The system was tested with the developed potential reconstruction algorithm, 
where the potential collected on the heart was simulated on the body. The 
inverse of that problem was also calculated where the potential on the heart 
is reconstructed from the measurement on the body, as shown in Figure 5.
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Figure 5. The electrical potential on the heart was reconstructed from the simulation 
of BSPM measurement

After leaving the multiplexer block, the signal is filtered with a band-stop 
filter cutting off 50Hz frequency and a combiner system using the resultant 
Wilson signal as a reference. Finally, such signal is passed from analogue to 
digital converters, where the last process of signal filtration takes place using 
the FFT filter. The measuring process occurs cyclically on all the available 
128 measured channels, obtaining an adequate signal sampling at 1ksps. It is 
worth noting that although the system can measure 128 channels, only 102 
were used for BSPM. The measured data is then transmitted via Ethernet to 
an IoT hub located on the company server cluster for analysis.

Signal simulations were performed with the following heart disorders: 
AFib_Fine – Atrial fibrillation; Bradycardia – heart rate below 60 times per 
minute; Normal – Normal sinus rhythm; PVC – Additional ventricular stim-
ulation; Tachycardia – heart rate above 100 times per minute; VFib_Fine – 
Ventricular Fibrillation – suddenly attempt to contract at rates of up to 500 bpm; 
TachFine – Ventricular Tachycardia – broad complex tachycardia originating 
in the ventricles. Fragments of signals with disturbances are presented in 9.
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Figure 6. The BSPM vest measures the signals for a  single channel. The signals 
presented are as follows: a) AFib_Fine, b) Brachycardia, c) Normal disturbance, d) 
PVC disturbance, e) Tachycardia, and f) VFib_Fine disturbance.

a) b)

c) d)

e) f)

Principal component analysis (PCA) was used to find information rela-
tionships between channels (Jolliffe, 2002). Principal Component Analysis 
is a method of orthogonal linear transformation to a new system of variables. 
It consists in transforming the data matrix into a new coordinate system. 
Consider an X-data matrix with dimensions . In the X matrix, each column 
is a p-dimensional data vector from each sensor. Normalization is performed 
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on the columns to eliminate the differences between the possible differences 
among the values in the columns. This transformation is an l-dimensional 
set of p-dimensional weight vectors w(k) = (w1, …wp)(k), which converts the x(i)

lines matrix X into new variables PC(i) = (PC1, …PCl)(i) provided by
PCk(i) = x(i) ∙ w(k), i = 1, …, n  k = 1,…, l

Research Methodology

Statistical analyses and data visualisation were performed in an R environ-
ment using complot, factor extra, and ggplot2 libraries. A corrupt matrix from 
R was used to show the correlation between the channels in the signals and 
individual disorders. This matrix is created to visualise the correlation strength 
from the correlation matrix calculated for the channels. If the correlation is 
strongly positive, the given point showing the correlation between individual 
channels is marked as the navy-blue intensity. The correlation strength is 
shown as the red colour intensity if the correlation is negative.

Figure 7. Corrplot diagram of the correlation matrix. Channel numbering starts at 1 
for the upper-left corner of the matrix

AFib_Fine disorder VFib_Fine disturbance VTach_Fine disturbance

The correlation matrix structure is similar for AFib_Fine, Bradycardia, 
Normal, PVC, Tachycardia, and VFib_Fine disorders, as can be observed in 
Figures 6 and 7 b) ‘s correlation diagrams. Figure 10 c) shows the correlation 
matrix for the VTach_Fine disorder. The structure of the matrix differs sig-
nificantly from that of other disorders.
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PCA analysis was conducted for signals with individual disturbances to 
obtain latent variable (PC) channels in BSMP measurements. Measurement 
values from particular channels in BSPM measurements were taken as input 
variables in the PCA model. Separate analyses were performed for each dis-
order. After PCA analysis, a cumulative value for each disorder was obtained 
for the first two variables above 80% for PVC and 92% for VTach_Fine. For all 
the disorders, the cumulative value of the explained variance percentage is so 
significant that the first two variables represent the channel system. For both 
PC1 and PC2, the eigenvalues were more important than 1. Therefore, based 
on the Kaiser criterion and the percentage of explained variance criterion, 
two PC1 and PC2 have been chosen to represent the system.

Table 1. Percentages of explained variance for individual PC variables for data from 
individual disorders

Disorder AFib_Fine Bradycardia Normal PVC Tachycardia VFib-Fine VTach_Fine

PC1 69% 68% 68% 63% 52% 67% 54%

PC2 18% 19% 18% 18% 36% 19% 38%

The distribution of factor loadings for AFib_Fine, Bradycardia, Normal, 
PVC, Tachycardia, and VFib_Fine disorders are similar. The distribution and 
intensity change slightly within a given disorder. For the VTach _Fine variable, 
the factor loadings distribution differs from the other variables. More chan-
nels have weaker factor loadings for the variable PC1, while more channels 
from PC2 have more substantial factor loadings. A detailed list of the relevant 
channels can be found in Table 2. Figure 8 and Figure 9 mark the electrodes 
for which significant components were obtained in the variable PC1 and PC2 
for the standard signal.
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Table 2. Significant channels for the standard signal are divided into PC1 and PC2 variables

Normal Signal Negative factor loadings Positive factor loadings

PC1

High 1-16, 19-25, 27, 28, 33, 39, 42, 47, 52-55, 59, 61-63, 
70-72, 75, 78, 80-102

Medium 17,18, 26, 34, 41, 44-46, 51, 56, 58, 60, 64, 65, 69, 
73, 74, 77

Insignificant 29-32, 35-38, 40, 43, 48-50, 57, 67-68, 76, 79

PC2

High 17, 26, 29-32, 35-38, 43-46, 67-68, 34, 40, 41, 48-51, 56-58, 
60, 61, 63-66, 69

Medium 18,19

Insignificant 1-16, 20-25, 27-28, 33, 39, 42, 52-55, 59, 62, 66, 71, 72, 78-102

Figure 8. PC1 for VTachFine disturbance (dark blue point – high impact negative 
coefficient, blue – medium impact negative coefficient)

Figure 9. PC 2 for VTachFine disturbance (dark blue point – high impact negative 
coefficient, Redpoint – high impact positive coefficient)
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For all disorders other than VTach_Fine, the channels’ information differ-
ences vary only in a few channels, mainly on the PC2 variable. The differences 
in the channels to the standard signal are presented in Table 3.

Table 3 shows differences in the significance of channels to the signal without 
disturbance for the PC1 and PC2 variables

Additional significant channels 
compared to normal

Channels insignificant 
compared to normal

PC1

AFib_Fine lack lack

Bradycardia lack lack

PVC 41, 44, 45, 56, 58, 60

Tachycardia 79 9, 17-20, 23-24, 26-27, 44-46, 
75

VFib_Fine 56, 60, 75

PC2

AFib_Fine 23,72

Bradycardia 23,75

PVC 9, 20

Tachycardia 1-4, 9-13, 20-21, 24, 27, 33, 47 69

VFib_Fine 75

In the case of VTach_Fine disturbance, due to the similar percentages of 
PC1 and PC2 variable inputs in the system of variables, significant factor 
loadings in PC1 and PC2 are changed. Table 5 shows the significance of the 
channels for the VTach_Fine disorder in terms of variables.
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Table 5. Significant channels for the signal with VTach_Fine disturbance divided into PC1 and 
PC2 variables

VTachFine Negative factor loadings Positive factor loadings

PC1

High 29-32, 35-38, 43-45, 67-68, 76 15, 34, 39-41, 48-51, 55-56, 69-
74, 77-86, 91-94, 101-102

Medium 17-19, 26, 46, 75 7,8, 16, 52, 87-90, 99-100

Insignificant 1-6, 9-14, 20-25, 27-28, 33, 42, 47, 53-54, 95-98

PC2

High 1-6, 9-14, 17-28, 33, 42, 45-47, 
52-54, 75, 87-90, 95-100

Medium 7,8, 16, 29-32, 36, 44, 67, 91-94, 
101-102

Insignificant 15, 34, 35, 37-41, 43, 48-51, 55-66, 68-74,76-86

Figures 10 and 11 mark the electrodes for which significant components 
were obtained in the variables PC1 and PC2 for the signal with VTachFine 
disturbance.

Figure 10. PC1 for VTachFine disturbance (dark blue point – high impact negative 
coefficient, blue – medium impact negative coefficient, Redpoint – high impact positive 
coefficient, yellow – medium impact positive coefficient)

Figure 11. PC2 for VTachFine disturbance (dark blue point – high impact negative 
coefficient, blue – medium impact negative coefficient)
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Discussion

We analysed differences in the significance of the factor loadings for individ-
ual disturbances compared to the standard signal. For AFib_Fine, Bradycardia, 
Normal, and Tachycardia VFib_Fine disorders, the structure of significant 
channels in the PC1 and PC2 variables was similar.

For the PC1 variable, channel 79 was an additional important channel in the 
tachycardia disorder. In addition, channels 41, 44, 45, 56, 58, and 60 (Table 3) from 
the front left lower and upper left chest appeared insignificant in the PVC dis-
turbance compared to the standard signal. For the PC1 variable for Tachycardia 
disorder, the channels lying on the left side and symmetrically placed channel 75 
on the right side turned irrelevant compared to the signal without the disorder.

For the VFib Fine variable, these are channels 56, 60, and 65. The channel 
structure in the PC2 variable is more diverse than in the PC1 variable except 
for the VTach_Fine disorder, which, due to the most similar values of the 
percentage of explained variance of Variables PC1 and PC2, where the roles 
of the factors change places.

The main channels responsible for disturbance are those associated with 
a classical ECG measurement system with 12 channels labelled in Figure 8-11. 
Most of these channels are not significant in the PC1 variable but essential in 
PC2. This means that the PC1 variable will contain the information core of 
the similarities between the channels. The PC2 variable, on the other hand, 
will include information about specific disturbances in the BSPM signal. 
The main difference in the significance of the PC2 variable is that the chan-
nels on the left side and left back are essential for the Tachycardia disorder. 
Additional important channels are under the left armpit for AFib_Fine, PVC, 
and Brachycardia disorders.

For the variable VTach _Fine, probably by the most similar values of the 
percentage explanation of the channel system, the factor loadings in the 
variables PC1 and PC2 are exchanged with each other to the signal without 
disturbance. There is also a more differentiated division into channels with 
positive and negative factor loadings, which results in a more significant 
differentiation of the signs of loadings for both PC1 and PC2 than other dis-
turbances. For the VTach Fine disorder for the PC1 variable, the important 
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channels are those in the upper right and lower left front of the chest and the 
right side and right back.

The main factor containing information about disturbances in the con-
ducted analysis is the PC2 factor, which determines the channels responsible 
for distinguishing disorders. The exception is the VTach_Fib disorder, where 
due to similar percentage values of explained variance of PC1 and PC2 varia-
bles, the PC2 variable is a variable with a similar structure to the PC1 variables 
from the remaining disorders. Therefore, for a VTach_Fine disorder, the PC1 
variable will be responsible for channel differentiation for this disorder.

The differences between the Vtach Fine signal and the others are most 
likely due to the specifics of the signal itself. The VtachFine signal shows that 
the factors that enter PC1 and PC2 are swapped. Figure 7c shows a higher 
correlation between the channels (the vectors responsible for the channels 
are more concentrated), so these visitors will have higher factor charges and 
carry more information about PC1. Hence, there is also a higher percentage 
of explained variance in the PC1 variable compared to the other disturbances.

Conclusion

The paper presents research on determining information dependencies 
in the BSPM measurement channels. First, based on the simulation sys-
tem constructed for testing the innovative BSPM measuring waistcoat, heart 
rhythm signals were performed with disorders: Atrial fibrillation, Bradycardia, 
Normal signal, PVC, Tachycardia, Ventricular Fibrillation, Ventricular 
Tachycardia. Then, the connections between measurement channels were 
indicated using the PCA method, and latent variables, grouping individual 
measurement channels (electrode signals), were specified. Two new latent 
variables, PC1 and PC2, were selected for individual disturbances and standard 
signal, following the Kaiser criterion and the percentage of explained vari-
ance. Based on the number of electrodes in the waistcoat coinciding with the 
classical ECG electrodes, it was indicated that the variable PC2 is the variable 
based on which a particular disturbance is identified. The exception is the 
VTachFine disturbance for which variable PC1 is shown.
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The PCA analysis conducted in this paper has two tasks. The first is data 
reduction. Determining latent variables by PCA results reduced the data 
dimension from 102 variables in measurement data from the measuring elec-
trodes to 2 variables, PC1 and PC2. In addition to data reduction, PCA also 
has the advantage of getting rid of measurement noise and irrelevant variables 
without removing variables but only parts of them. The second is mapping 
areas on the patient’s body for significant measurement electrodes, which can 
be determined from significant factor loadings in the latent variables PC1 
and PC2. Such areas can be helpful during the detection of disease areas, e.g., 
electrodes during ECG measurement can be applied in other regions than 
classically used in ECG. A disadvantage of the PCA method is its sensitivity 
to measurement signal disturbances. Therefore, a distortion-free, filtered, or 
pre-filtered signal is needed. The authors will extend this research by showing 
how the indicated areas on the patient’s body correlate with regions in the 
heart, which will result in a very detailed diagnosis.

The work presented here is used in a cloud expert system that analyses and 
classifies EIT and BSPM signals. It is currently patented (patent no. 437101).

The research will also be the basis for validating clinical studies conducted 
on patients, where additional problems may arise due to signal interference 
caused by electrode friction, improper adhesion of electrodes to the patient’s 
body, or patient movement during the test.
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